A Highly Efficient Sensor Platform Using Simply Manufactured Nanodot Patterned Substrates

نویسندگان

  • Sozaraj Rasappa
  • Tandra Ghoshal
  • Dipu Borah
  • Ramsankar Senthamaraikannan
  • Justin D. Holmes
  • Michael A. Morris
چکیده

Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an 'insitu' BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing

Electron beam lithography (EBL) was used to directly pattern periodic gold nanodot arrays on optical fiber tips. Localized surface plasmon resonance of the E-beam patterned gold nanodot arrays on optical fiber tips was utilized for biochemical sensing. The advantage of the optical fiber based localized surface plasmon resonance (LSPR) sensors is the convenience to work with and work in harsh en...

متن کامل

Ag nanodot array as a platform for surface-enhanced Raman scattering

Well-ordered Ag nanodot array on indium-tin-oxide (ITO) glass is adopted as a sensor platform based on surface-enhanced Raman scattering (SERS). SERS has attracted extensive attention in the development of sensitive chemical or biological sensors due to its property of the amplification of electromagnetic fields on a metal nanostructure. The key issue for the applications of SERS is to secure t...

متن کامل

Fabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface

An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...

متن کامل

One-Step Mask Etching Strategy Toward Ordered Ferroelectric Pb(Zr0.52Ti0.48)O3 Nanodot Arrays

In this report, ordered lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanodot arrays were fabricated by an original one-step mask etching route. The one-step mask etching strategy is based on the patterned nanostructure of barrier layer (BL) at the bottom of anodic aluminum oxide (AAO), by a direct transfer of the nanopattern from BL to the pre-deposited PZT film, without introduction of any...

متن کامل

Patterned growth of vertically-aligned ZnO nanorods on a flexible platform for feasible transparent and conformable electronics applications

Despite the attractiveness of low temperature hydrothermal processes, the synthesis of vertical ZnO nanostructures has mostly been limited to rigid substrates. Moreover, patterned growth of nanostructures is also commonly carried out on rigid substrates, since conventional optical lithography is not easily applied to polymeric substrates, as focusing and reaction of the substrate with the organ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015